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The Rubin Observatory’s Simonyi Survey Telescope must use an active optics system to cor-
rect perturbations to the optical alignment and mirror figures. Achieving these corrections
requires the following steps:

1. estimating the wavefront of the optical system,

2. using the wavefront to estimate the current configuration of the optical system,

3. using the current optical configuration to derive forces to apply to the hexapods and
actuators.

This note concerns the first step, filling in details behind Xin et al. (2015) using the notation of
version 9 of the wavefront estimation pipeline (WEP).

Estimating the wavefront typically requires an optical model for mapping the photons from
the pupil to the image plane. Deriving this mapping is the focus of Section 1. Section 2 dis-
cusses different methods for estimating the wavefront of the telescope from defocused im-
ages.

1 Mapping from the Pupil to the Image Plane

In this section we define the wavefront of the telescope and derive a mapping from photon
positions on the pupil to the corresponding positions on the image plane.

1.1 The On Axis and Paraxial Models

The optical system of a telescope can be treated as a black box which receives an incoming
wave on the pupil plane and converts that wave to one converging on the focal plane (Fig. 1).
For example, ignoring phase perturbations from e.g. atmospheric turbulence, we can assume
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Figure 1: Black box diagram of a telescope. An incoming diverging wave enters the pupil
on the left, is transformed by the optical system, and is emitted from the pupil on the right,
where it converges on the focal plane.

the incoming wave is a plane wave with phase

𝜑(𝑧,x) = −𝑘𝑧, (1)

where 𝑘 is the wavenumber and x = (𝑥, 𝑦) is a 2D transverse position vector. After passing
through the optical system, the wave emerges with the phase

𝜑(𝑧,x) = −𝑘√(𝑧 − 𝑓)2 + x2, (2)

where 𝑓 is the focal length of the system and we have defined 𝑧 = 0 at the pupil.

We define the wavefront at the pupil using the reference sphere, which we define as the
sphere with radius 𝑓 that is centered on the focal plane and passes through the center of the
pupil – i.e., the first emerging wavefront on the right of Fig. 1. The points on the reference
sphere are the set

{(𝑧𝑝,x𝑝) | 𝑧𝑝 = 𝑓 − √𝑓 2 − x2
𝑝, x2

𝑝 < 𝑅2
𝑝} , (3)

where 𝑅𝑝 is the radius of the pupil.
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Figure 2: Diagram showing the mapping of a pupil point to points on the defocused image
planes. Note the line from (𝑧𝑝,x𝑝) to (𝑓 + ℓ, x+

𝑖 ) only passes through the focal point when
𝑊 (x𝑝) = 0. This geometry is the basis for Eq. 6.

On the reference sphere the gradient of the phase is

∇𝜑(x𝑝) = 𝑘
𝑓 (√𝑓 2 − x2

𝑝 ẑ − x𝑝) . (4)

We have added the subscript 𝑝 to the transverse vector 𝑥 to remind that this equation applies
to the wavefront at the pupil. Recall that photons propagate in the direction of the phase
gradient. From Eq. 4, you can see that a photon starting at (𝑧𝑝,x𝑝) propagates in the direction
(𝑓 −𝑧𝑝, −x𝑝), and thus converges on the point (𝑓 , 0). In other words, all photons emerging from
the pupil converge on the focal point.

The above assumes a perfect optical system. We wish to consider an optical system with per-
turbations to alignment and mirror figure, which induce a phase perturbation 𝛿𝜑 = −𝑘 𝑊 (x𝑝).
𝑊 (x𝑝) is known as the optical path difference (OPD) and is defined on the reference sphere.
With this perturbation, the phase gradient is now

∇𝜑(x𝑝) = 𝑘
𝑓 (√𝑓 2 − x2

𝑝 ẑ − x𝑝 − 𝑓∇x𝑊 (x𝑝)) . (5)

From Eq. 5 you can see the effect of optical perturbations is to deflect photons from position
x𝑝 on the reference sphere by the amount −𝑓∇x𝑊 (x𝑝) on the focal plane.
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Active optics systems usually operate on defocused images. In particular, Rubin uses images
from curvature wavefront sensors (CWFSs) that are offset on either side of the focal plane by
a small distance ℓ. Thus we are interested in the images formed on the defocused planes at
positions 𝑧±

𝑖 = 𝑓 ± ℓ. We can determine the mapping from pupil position x𝑝 to image position
(x±

𝑖 , 𝑧±
𝑖 ) using the similar triangles in Fig. 2:

x±
𝑖 − x𝑝

𝑧±
𝑖 − 𝑧𝑝

=
∇x𝜑(x𝑝)

𝜕𝜑(x𝑝)/𝜕𝑧 ⟹
x±

𝑖 − x𝑝

√𝑓 2 − x𝑝 ± ℓ
=

−x𝑝 − 𝑓∇x𝑊 (x𝑝)

√𝑓 2 − x2
𝑝

. (6)

Solving for the image position yields

x±
𝑖 = ∓ ℓ

√𝑓 2 − x2
𝑝

x𝑝 − 𝑓
⎛
⎜
⎜
⎝
1 ± ℓ

√𝑓 2 − x2
𝑝

⎞
⎟
⎟
⎠

∇x𝑊 (x𝑝). (7)

We see that for an unaberrated wavefront, the magnitude of the vector x𝑝 shrinks linearly
with respect to position on the 𝑧-axis. The effect of defocused-imaging is to simply adjust the
linear scaling according to the fraction of the 𝑧-axis distance to the focal plane at which the
defocused plane lies (plus an inversion of the vector on the other side of focus). The deflection
due to the phase perturbation is similarly rescaled. For typical configurations, however, the
rescaling of the deflection term is very nearly one (for Rubin, the maximum deviation is only
one part in ten thousand) and can therefore be safely neglected. Thus we have

x±
𝑖 = ∓ ℓ

√𝑓 2 − x2
𝑝

x𝑝 − 𝑓∇x𝑊 (x𝑝). (8)

In the absence of wavefront perturbations, the radius of the pupil projected onto the defo-
cused image plane is

𝑅𝑖 =
ℓ 𝑅𝑝

√𝑓 2 − 𝑅2
𝑝

= ℓ
√4𝑁2 − 1

, (9)

where 𝑁 is the focal ratio (or 𝑓 -number) of the telescope. It is convenient to rewrite Eq. 8 in
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terms of the normalized, centered coordinates

u = (𝑢, 𝑣) ≡ 1
𝑅𝑝

x (10)

u′ = (𝑢′, 𝑣′) ≡ 1
𝑅𝑖 [x + 𝑓∇x𝑊 (0)]. (11)

In these coordinates, the unaberrated pupil has a radius of 1 on both the pupil and image
planes, and the aberrated pupil is centered on both the pupil and image planes. With these
coordinate transformations, the mapping from pupil to image plane is

u′±
𝑖 = ∓

√
4𝑁2 − 1

4𝑁2 − u2
𝑝
u𝑝 − 2𝑁√4𝑁2 − 1

ℓ [∇u𝑊 (u𝑝) − ∇u𝑊 (0)]. (12)

This formula is implemented in WEP as the “on axis” model. In the limit of 𝑁 ≫ 1, we have

u′±
𝑖 = ∓u𝑝 − 4𝑁2

ℓ [∇u𝑊 (u𝑝) − ∇u𝑊 (0)], (13)

which matches Eq.’s 11 and 12 of Roddier & Roddier (1993) (note this paper only explicitly
derives formulae for the intrafocal image, they do not discard the negligible adjustment to
the deflection term in Eq. 7, and they do not center their rescaled coordinates). For Rubin
𝑁 = 1.234, so the 𝑁 ≫ 1 assumption cannot be made but Eq. 13 is included in WEP as the
“paraxial” model for testing purposes.

Using the mapping from pupil to images planes we can predict the image intensity on the
defocused planes. Let 𝐼(u𝑝) be the intensity on the pupil (which for distant point sources is
typically uniform) and 𝐼′(u′

𝑖 ) be the intensity on the image plane. From flux conservation,

𝐼(u𝑝) 𝑑u𝑝 = 𝐼′(u′
𝑖 ) 𝑑u′

𝑖 = 𝐼′(u′
𝑖 ) |

𝑑u′
𝑖

𝑑u𝑝 | 𝑑u𝑝, (14)

and therefore

𝐼(u𝑝) = 𝐼′(u′
𝑖 ) |

𝑑u′
𝑖

𝑑u𝑝 | , (15)

where |𝑑u′
𝑖 /𝑑u𝑝| is the determinant of the Jacobian of the u𝑝 → u′

𝑖 transformation.
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The Jacobian is

𝑑u′±
𝑖

𝑑u𝑝
=

√
4𝑁2 − 1

4𝑁2 − u2
𝑝 [

∓12 +
u𝑝 ⊗ u𝑝

4𝑁2 − u2
𝑝 ]

− 2𝑁√4𝑁2 − 1
ℓ

𝑑2𝑊 (u𝑝)
𝑑u2 . (16)

In particular, 12 is the 2 × 2 identity matrix, the outer product is

u𝑝 ⊗ u𝑝 =
(

𝑢2
𝑝 𝑢𝑝𝑣𝑝

𝑣𝑝𝑢𝑝 𝑣2
𝑝 )

, (17)

and 𝑑2𝑊 (u𝑝)/𝑑u2 is the Hessian matrix. This is the Jacobian of the “on axis” model in WEP. In
the limit 𝑁 ≫ 1, this becomes

𝑑u′±
𝑖

𝑑u𝑝
= ∓12 − 4𝑁2

ℓ
𝑑2𝑊 (u𝑝)

𝑑u2 , (18)

the determinant of which matches Eq. 13 of Roddier & Roddier (1993). This is the Jacobian of
the “paraxial” model in WEP.

Note that the on axis Eq.’s 12 and 16 reproduce Eq.’s 22-28 from Xin et al. (2015) if you take
the definition of 𝑚 from the CompensableImage class in WEP version 8.

1.2 The Off Axis Model

The equations above apply to sources near the optical axis, but at large field angles there
are additional distortion effects these equations do not account for. For large field angles,
therefore, we use a numerical model fit using Batoid. In this model, we represent the OPD in
a Zernike series:

𝑊 (u𝑝) = ∑
𝑖

𝛼𝑖𝑍𝑖(u𝑝), [OPD Only] (19)

where the 𝛼𝑖 are coefficients inmeters (see Section 2 formore details on Zernike polynomials).
A second series of coefficients fit by Batoid, 𝛽𝑖, are added to these coefficients such that

𝑊 (u𝑝) = ∑
𝑖

(𝛼𝑖 + 𝛽𝑖)𝑍𝑖(u𝑝). [OPD + Batoid model] (20)
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We then use the equations above, dispensing with any terms that do not directly reference
𝑊 (u𝑝). That is,

u′±
𝑖 = −2𝑁√4𝑁2 − 1

ℓ [∇u𝑊 (u𝑝) − ∇u𝑊 (0)] and
𝑑u′±

𝑖
𝑑u𝑝

= −2𝑁√4𝑁2 − 1
ℓ

𝑑2𝑊 (u𝑝)
𝑑u2 . (21)

Note the Batoid coefficients only account for off-axis projection effects and do not account
for the intrinsic aberrations associated with the telescope. These formulae are implemented
in WEP as the “off axis” model.

2 Inferring the Wavefront from Defocused Images

The goal of the active optics system is to infer 𝑊 (u𝑝), the OPD of the optical system, from the
defocused image intensity 𝐼𝑖(u𝑖, 𝑧𝑖 = 𝑓 ± ℓ) using the relations derived in the previous section.
This is an inversion problem. In the following subsections, I detail three different methods for
performing this inversion.

In all cases, we seek to represent the OPD as a linear combination of annular Zernike polyno-
mials defined on the pupil:

𝑊 (u𝑝) = ∑
𝑖

𝛼𝑖𝑍𝑖(u𝑝), (22)

where the coefficients 𝛼𝑖 carry the units. The annular Zernike polynomials are a complete
orthogonal set of basis functions that roughly correspond to traditional optical aberrations.
We use the Noll index scheme – i.e. 𝑍4 corresponds to defocus, 𝑍5 and 𝑍6 correspond to
oblique and vertical astigmatism, etc. We use the normalization

∬ 𝑍𝑖(u𝑝)𝑍𝑗(u𝑝) 𝑑u𝑝 = 𝐴𝛿𝑖𝑗 , (23)

where 𝐴 is the pupil area. Using the normalized coordinates defined in the previous section,
𝐴 = 𝜋(1 − 𝜀2) where 𝜀 is the fractional obscuration of the pupil. For Rubin this is 𝜀 = 0.612.
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2.1 Inversion via forward modeling

One method for estimating the Zernike coefficients is to guess an initial set of coefficients
and use the formulae from the previous section to forward model the image on one (or both)
of the defocused plane(s). You can then use an optimization routine to determine the set of
Zernike coefficients that best matched the observed image. This is the method proposed by
Janish (2012) and implemented in the Danish algorithm.

In addition to optimizing the Zernike coefficients, danish also jointly optimizes a source pixel
offset and the astronomical seeing. The former allows danish to account for miscentering,
while the latter accounts for the atmospheric turbulence that blurs any image taken with a
ground based telescope.

danish also implements a mask model to account for vignetting which it also projects onto
the image plane. This is similar to the mask model from Janish (2012) which estimates the
fractional illumination of pixels on the pupil edge by making a locally linear approximation of
the circular pupil across each of the edge pixels. However the projection of the pupil onto
the image plane is only circular in the absence of wavefront aberrations. danish improves on
the model of Janish (2012), therefore, by accounting for wavefront aberrations in the mask
model.

Early testing suggests this method is prone to outliers, but is otherwise more accurate than
the TIE (described below). danish is also slower than the TIE.

2.2 Inversion via Solving the Transport of Intensity Equation

If you have a pair of images from both sides of focus, you can estimate the wavefront by solv-
ing the transport of intensity equation (TIE). The advantage of the TIE over the forward mod-
eling method is that it admits an algebraic solution which is faster than general optimization.
In reality the TIE must be iteratively solved to converge on the true wavefront, however even
with these iterations the TIE method is typically faster than the forward modeling method.
The disadvantage is that the TIE method is complicated and more sensitive to issues such as
miscentering, blending, and vignetting.

We start by deriving the TIE in Section 2.2.1. In Section 2.2.2 we discuss approximations of
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the beam intensity and longitudinal derivative, which are key inputs to the TIE. Finally, in Sec-
tion 2.2.3 we discuss solving the TIE via Zernike expansion.

2.2.1 Deriving the TIE

Wewill derive the TIE by applying conservation of energy in the paraxial limit. You can also de-
rive the TIE as the imaginary part of the paraxial Helmholtz equation (i.e. the time-independent
wave equation). Note these paraxial assumptions concern the incoming photon beam, which
for distant point sources is very nearly a plane wave. This differs from the previous section
in which we considered a photon beam after it had passed through the optical system. In
that case, the paraxial assumption is invalid for systems with low focal ratio, like the Rubin
Observatory’s Simonyi Survey Telescope.

The complex amplitude of amonochromatic wave with intensity 𝐼 and phase 𝜑 can be written

Ψ(𝑧,x) = √𝐼(𝑧,x)𝑒𝑖𝜑(𝑧,x). (24)

The phase of this wave can be expanded

𝜑(𝑧,x) = 𝑘𝑧𝑧 + kx ⋅ x, (25)

where

𝑘2 = 𝑘2
𝑧 + |kx|2 = (

2𝜋
𝜆 )

2
, (26)

and 𝜆 is the wavelength of the light.

The Poynting vector is the energy flux of thewave. By definition, the intensity is themagnitude
of the time average of the Poynting vector: |⟨S(𝑧,x)⟩| = 𝐼(𝑧,x). Since photons propagate
perpendicular to the wavefront, the time average Poynting vector must also be proportional
to the gradient of the phase: ⟨S(𝑧,x)⟩ ∝ ∇𝜑(𝑧,x). Combining these two requirements, we have

⟨S(𝑧,x)⟩ = 1
𝑘𝐼(𝑧,x)∇𝜑(𝑧,x). (27)

Now let’s use the paraxial approximation. That is, we consider a wave whose direction is very
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nearly aligned with the 𝑧 axis. In this limit, |k𝑥,𝑦|/𝑘𝑧 ≪ 1, and we can approximate 𝑘𝑧 ≈ 𝑘. Then,

∇𝜑(𝑧,x) = 𝑘ẑ + ∇x𝜑(x), (28)

where ∇x is the transverse gradient and 𝜑(x) is the transverse component of the phase. We
can now write

⟨S(x, 𝑧)⟩ = 𝐼(x, 𝑧)ẑ + 1
𝑘𝐼(x, 𝑧)∇x𝜑(x). (29)

Finally, we can apply conservation of energy. In the vacuum, energy conservation demands
that

∇ ⋅ ⟨S(𝑧,x)⟩ = 0. (30)

Plugging in the time-averaged Poynting vector in the paraxial limit, we get the TIE:

𝜕𝐼(𝑧,x)
𝜕𝑧 + ∇x ⋅ [

1
𝑘 𝐼(𝑧,x)∇x𝜑(x)] = 0. (31)

The TIE has a simple interpretation in terms of conservation of energy. In the paraxial limit,
𝐼(𝑧,x) is the energy flux in the longitudinal direction, and 𝑘−1𝐼(𝑧,x)∇x𝜑(x) is the energy flux in
the transverse direction. The TIE says the decrease (increase) in longitudinal energy fluxmust
be equal to the energy flux that is leaking out (coming in) the transverse direction.

We can see another obvious interpretation of the TIE if we use the fact that the pupil is uni-
formly illuminated by distant point sources— i.e., ∇x𝐼 = 0 inside the pupil. Using this fact and
applying our definition of the OPD yields

∇2𝑊 = 1
𝐼

𝜕𝐼
𝜕𝑧 . (32)

In words, fractional changes in beam intensity are sourced by wavefront curvature.

Finally, we can rewrite Eq. 31 in the normalized pupil coordinates of Section 1:

𝜕𝐼(0,u𝑝)
𝜕𝑧 = 1

𝑅2 ∇u ⋅ [𝐼(0,u𝑝)∇u𝑊 (u𝑝)]. (33)
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2.2.2 Approximating Beam Intensity and Longitudinal Derivative

To solve the TIE, we imagine that our defocused images are in-focus images of different cross
sections of the photon beam. We map the defocused images back to the pupil plane, but
rather than thinking of the result as pupil illuminations, we imagine these are physical cross
sections of the photon beam. We can use the lens equation to determine the 𝑧 positions of
these cross sections:

1
𝑜 + 1

𝑓 = 1
𝑖 , (34)

where 𝑜 and 𝑖 are the object and image positions, respectively. We know our images are at
locations 𝑖 = 𝑓 ± ℓ, so the objects are at locations

𝑜 = ∓𝑓
ℓ (𝑓 ± ℓ). (35)

Thus, we see that the extrafocal image (𝑖 = 𝑓 + ℓ) correspond to a cross section of the beam
before the exit pupil (𝑜 < 0), while the intrafocal image (𝑖 = 𝑓 −ℓ) correspond to a cross section
after the exit pupil (𝑜 > 0). For Rubin, 𝑓 ≫ ℓ, and so we can state that 𝑜 ≈ ∓Δ𝑧, where

Δ𝑧 = 𝑓 2

ℓ . (36)

With this knowledge in hand, we can make a linear approximation of 𝐼 and 𝜕𝐼/𝜕𝑧:

𝐼(0,u𝑝) ≈
𝐼(+Δ𝑧,u𝑝) + 𝐼(−Δ𝑧,u𝑝)

2 (37)

𝜕𝐼(0,u𝑝)
𝜕𝑧 ≈

𝐼(+Δ𝑧,u𝑝) − 𝐼(−Δ𝑧,u𝑝)
2Δ𝑧 . (38)

Note this approximation is valid for small Δ𝑧. Counter-intuitively, small values of Δ𝑧 corre-
spond to large values of ℓ. For Rubin ℓ is quite small (meaning ℓ ≪ 𝑓 ) which violates this
assumption. Regardless, Roddier & Roddier (1993) found that solving the TIE in the iterative
manner described below converges to an accurate estimate of the wavefront.
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2.2.3 Solving via direct Zernike expansion

With approximations of 𝐼 and 𝜕𝐼/𝜕𝑧 in hand, we need to invert the TIE and solve for the OPD.
This can be done by expanding the OPD in a Zernike series:

𝜕𝐼(0,u𝑝)
𝜕𝑧 = 1

𝑅2 ∑
𝑗

𝛼𝑗∇u ⋅ [𝐼(0,u𝑝)∇u𝑍𝑗(u𝑝)]. (39)

We can then multiply each side by 𝑍𝑖(u𝑝) and integrate over the pupil:

∬ 𝑍𝑖(u𝑝)
𝜕𝐼(0,u𝑝)

𝜕𝑧 𝑑u𝑝 = 1
𝑅2 ∑

𝑗
𝛼𝑗 ∬ 𝑍𝑖(u𝑝)∇u ⋅ [𝐼(0,u𝑝)∇u𝑍𝑗(u𝑝)] 𝑑u𝑝. (40)

Integrating by parts and using the fact that the beam intensity vanishes at the boundary yields

∬ 𝑍𝑖(u𝑝)
𝜕𝐼(0,u𝑝)

𝜕𝑧 𝑑u𝑝 = − 1
𝑅2 ∑

𝑗
𝛼𝑗 ∬ 𝐼(0,u𝑝) ∇u𝑍𝑖(u𝑝) ⋅ ∇u𝑍𝑗(u𝑝) 𝑑u𝑝. (41)

If we discretize the pupil into pixels indexed by 𝑎, 𝑏, the integrals become summations and the
pixel size cancels, yielding

∑
𝑎,𝑏

(𝑍𝑖)𝑎𝑏 (
𝜕𝐼
𝜕𝑧 )𝑎𝑏

= ∑
𝑗

𝛼𝑗 [
− 1

𝑅2 ∑
𝑎𝑏

𝐼𝑎𝑏 (∇u𝑍𝑖 ⋅ ∇u𝑍𝑗)𝑎𝑏]
. (42)

This is just a linear system. If we define the vector

𝑏𝑖 = ∑
𝑎,𝑏

(𝑍𝑖)𝑎𝑏 (
𝜕𝐼
𝜕𝑧 )𝑎𝑏

(43)

and the matrix

𝑀𝑖𝑗 = − 1
𝑅2 ∑

𝑎,𝑏
𝐼𝑎𝑏 (∇u𝑍𝑖 ⋅ ∇u𝑍𝑗)𝑎𝑏, (44)

then we seek to solve the equation

𝑏𝑖 = ∑
𝑗

𝑀𝑖𝑗𝛼𝑗 . (45)

Of course with real data there is no guarantee a solution exists. Instead, we treat this as
a regression problem and minimize the squared residuals of 𝑏𝑖. In WEP this is done using
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np.linalg.lstsq.

Since both 𝑏𝑖 and 𝑀𝑖𝑗 are constructed from the same pair of images, both are noisy and have
correlated errors. Therefore, you might expect an errors-in-variables model is needed for
unbiased estimation of the 𝛼𝑖. However, a simple argument shows that the noise in 𝑀𝑖𝑗 can
be neglected and ordinary least squares is appropriate:

1. The errors in 𝐼 and 𝜕𝐼/𝜕𝑧 are of the same order of magnitude, and 𝑅2 is 𝒪(102 m).

2. Due to the normalization condition (Eq. 23), the values of 𝑍𝑖 and ∇u𝑍𝑖 are 𝒪(1).

3. The errors in 𝑀𝑖𝑗 are connected to the variables 𝑏𝑖 by the Zernike coefficients 𝛼𝑗 , which
are 𝛼𝑗 ≲ 𝒪(10−6 m) by assumption.

4. Therefore the errors in 𝑀𝑖𝑗 propagated to 𝑏𝑖 are roughly 8 orders of magnitude smaller
than the errors native to 𝑏𝑖.

Furthermore, thewavefront error due to pixel noise is subdominant to the phase variance due
to atmospheric turbulence. For the impact of atmospheric turbulence on Zernike coefficient
estimation, see Appendix D of Crenshaw et al. (2024).

2.3 Inversion via Artificial Intelligence

Rather than implementing themapping equations of Section 1 to solve for the wavefront, you
can build a deep learning (or artificial intelligence; AI) network to implicitly learn the mapping
by training the network to estimate Zernike coefficients directly from out-of-focus images. For
more details on this approach and comparisons to the TIE see Crenshaw et al. (2024).

13
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A Pupil to Image Mapping for Off-axis Points

In this appendix we will generalize the derivations of Section 1 for off-axis image points.

The wavefront of a spherical wave emerging from the pupil and converging on a point (𝑧,x) =
(𝑓 ,x0

𝑖 ) is

𝜑(𝑧,x) = −𝑘√(𝑧 − 𝑓)2 + (x − x0
𝑖 )2. (46)

The phase gradient on the reference sphere is

∇𝜑(x𝑝) = 𝑘
̃𝑓 (√ ̃𝑓 − (x𝑝 − x0

𝑖 )2 ẑ − (x𝑝 − x0
𝑖 )) , (47)

where we defined ̃𝑓 = √𝑓 2 + (x0
𝑖 )2 and used 𝑧𝑝 = 𝑓 − √ ̃𝑓 2 − (x𝑝 − x0

𝑖 )2. You can now see the
unperturbed wave emerges from (𝑧𝑝,x𝑝) and converges on (𝑓 ,x0

𝑖 ). Again adding the phase
perturbation 𝛿𝜑 = −𝑘 𝑊 (x𝑝) yields the gradient

∇𝜑(x𝑝) = 𝑘
̃𝑓 (√ ̃𝑓 − (x𝑝 − x0

𝑖 )2 ẑ − (x𝑝 − x0
𝑖 ) − ̃𝑓∇x𝑊 (x𝑝)) . (48)

Using the same similar-triangles argument, we have

x±
𝑖 − x𝑝

𝑧±
𝑖 − 𝑧𝑝

=
∇x𝜑(x𝑝)

𝜕𝜑(x𝑝)/𝜕𝑧 ⟹
x±

𝑖 − x𝑝

√𝑓 2 − x𝑝 ± ℓ
=

−(x𝑝 − x0
𝑖 ) − ̃𝑓∇x𝑊 (x𝑝)

√ ̃𝑓 − (x𝑝 − x0
𝑖 )2

. (49)

Isolating the image position:

x±
𝑖 − x0

𝑖 = ∓ ℓ

√ ̃𝑓 2 − (x𝑝 − x0
𝑖 )2

x𝑝 − ̃𝑓
⎛
⎜
⎜
⎝
1 ± ℓ

√ ̃𝑓 2 − (x𝑝 − x0
𝑖 )2

⎞
⎟
⎟
⎠

∇x𝑊 (x𝑝). (50)

Again, for the aberration term we can safely discard the term of order 𝒪(ℓ/ ̃𝑓 ), yielding

x±
𝑖 − x0

𝑖 = ∓ ℓ

√ ̃𝑓 2 − (x𝑝 − x0
𝑖 )2

x𝑝 − ̃𝑓∇x𝑊 (x𝑝). (51)

We can use the same normalized coordinates of Eq. 11, except we now absorb x0
𝑖 into the
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centering of the image coordinates. We can also use x0
𝑖 = −𝑓𝜃 = −2𝑁𝑅𝑝 𝜃 where the 𝜃 is the

field angle of the source in radians, and the negative sign is due to the fact that Rubin has an
odd number of mirrors (for Rubin this formula is accurate to one part in ten thousand even at
wide field angles). With these definitions, and plugging in the definition of ̃𝑓 , Eq. 51 becomes

u′±
𝑖 = ∓

√
4𝑁2 − 1

4𝑁2 − u2
𝑝 + 4𝑁(u𝑝 ⋅ 𝜃 )

u𝑝 − 2𝑁√(4𝑁2 − 1)(1 − 𝜃2)
ℓ [∇u𝑊 (u𝑝) − ∇u𝑊 (0)]. (52)

Taking the derivative of this mapping yields the Jacobian

𝑑u′±
𝑖

𝑑u𝑝
=

√
4𝑁2 − 1

4𝑁2 − u2
𝑝 + 4𝑁(u𝑝 ⋅ 𝜃 ) [

∓12 +
(u𝑝 − 2𝑁𝜃) ⊗ u𝑝

4𝑁2 − u2
𝑝 + 4𝑁(u𝑝 ⋅ 𝜃 ) ]

− 2𝑁√(4𝑁2 − 1)(1 − 𝜃2)
ℓ

𝑑2𝑊 (u𝑝)
𝑑u2 .

(53)

These formulae mildly improve the accuracy of the on axis model when applied to off-axis
points near the center of the focal plane. However, these formulae plus the inclusion of the
intrinsic telescope aberrations in 𝑊 (u𝑝) are not sufficient for accurately modeling wide field
angles for Rubin. As such, these formulae are not currently implemented in WEP and the
numerical off-axis model described in Section 1.2 is used instead.
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